细胞破碎是指利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。结合重组DNA技术和组织培养技术上的重大进展,使以前认为很难获得的蛋白质现在可以大规模生产。
但是由于细菌、酵母、真菌、植物细胞壁的组成成分不同,且同类细胞结成的网状结构也不同,所以其细胞壁的坚固程度不同。而动物细胞虽没有细胞壁,但具有细胞膜,也需要一定的细胞破碎方法来破膜,达到提取产物的目的。
超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化,即超声生物效应。
超声对细胞的作用主要有热效应,空化效应和机械效应。
热效应是当超声在介质中传播时,摩擦力阻碍了由超声引起的分子震动,使部分能量转化为局部高热(42-43℃),因为正常组织的临界致死温度为45.7℃,而肿瘤组织比正常组织敏感性高,故在此温度下肿瘤细胞的代谢发生障碍,DNA、RNA、蛋白质合成受到影响,从而杀伤癌细胞而正常组织不受影响。
空化效应是在超声照射下,生物体内形成空泡,随着空泡震动和其猛烈的聚爆而产生出机械剪切压力和动荡,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。
机械效应是超声的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。杀伤作用的强弱与超声的频率和强度密切相关。
超声波破碎作为细胞破碎的一种方法在实验室规模应用较普遍,处理少量样品时操作简便,液量损失少,但是超声波产生的化学自由基团能使某些敏感性活性物质变性失活。而且大容量装置声能传递,散热均有困难,应采取相应降温措施。从前面可以看出超声波破碎细胞技术远未完善,还有待进一步发展。